2007 Vol. 9, No. 17 3283-3286

Enantiopure 1,4-Benzoxazines via 1,2-Cyclic Sulfamidates. Synthesis of Levofloxacin

John F. Bower,† Peter Szeto,‡ and Timothy Gallagher*,†

School of Chemistry, University of Bristol, Bristol BS8 1TS, U.K., and Synthetic Chemistry, GlaxoSmithKline, Medicines Research Centre, Stevenage, SG1 2NY U.K.

t.gallagher@bristol.ac.uk

Received May 28, 2007

ABSTRACT

1,2-Cyclic sulfamidates undergo efficient and regiospecific nucleophilic cleavage with 2-bromophenols (and related anilines and thiophenols), followed by Pd(0)-mediated amination to provide an entry to substituted and enantiomerically pure 1,4-benzoxazines (and quinoxalines and 1,4-benzothiazines). This chemistry provides a short and efficient entry to (3*S*)-3-methyl-1,4-benzoxazine 19, a late stage intermediate in the synthesis of levofloxacin.

1,2- and 1,3-cyclic sulfamidates 1, which are readily available from substituted and often enantiopure 1,2- and 1,3-aminoalcohols, are synthetically versatile electrophiles displaying a reactivity profile analogous to activated aziridines and azetidines, respectively. Nucleophilic cleavage, which is highly selective for the C-O bond, occurs in a stereospecific manner (S_N2), and the resulting N-sulfate is readily hydrolyzed to the final product under mildly acidic conditions.\(^1 Cyclic sulfamidates are readily exploitable in a number of ways, and we have developed efficient and flexible entries to a range of enantiomerically pure N-heterocyclic structures as illustrated in Scheme 1.\(^2 Of particular value is the

nucleophilic cleavage of 1,2- and 1,3-cyclic sulfamidates with α -functionalized ester enolates which provides an entry to substituted pyrrolidinones and piperidinones 2.

Scheme 1. Cyclic Sulfamidates as Precursors to N-Heterocycles

The scope of this methodology has been defined both in terms of *N*-heterocyclic methodologies^{2b,d} and via efficient, asymmetric routes to biologically active targets, such as the antidepressant (–)-paroxetine^{2f} and natural products (+)-

[†] University of Bristol.

[‡] GlaxoSmithKline.

⁽¹⁾ For a review on the synthesis and reactivity of cyclic sulfamidates, see: Meléndez, R. E.; Lubell, W. D. *Tetrahedron* **2003**, *59*, 2581–2616. Six-ring cyclic sulfamidates, where nitrogen is part of an aziridine ring system, undergo nucleophilic cleavage preferentially at the C–N bond to afford substituted seven-ring cyclic sulfamidates: (a) Duran, F.; Leman, L.; Ghini, A.; Burton, G.; Dauban, P.; Dodd, R. H. *Org. Lett.* **2002**, *4*, 2481–2483. (b) Duran, F. J.; Ghini, A. A.; Dauban, P.; Dodd, R. H.; Burton, G. *J. Org. Chem.* **2005**, *70*, 8613–8616.

laccarin^{2f} and (-)-aphanorphine.^{2c,e} Heteroatom-based nucleophiles (α -amino or thio esters) react with 1,2-cyclic sulfamidates to give thiomorpholinones and piperazinones **3** in a stereospecific manner.^{2a}

In this paper, we describe a new application of heteroatom nucleophiles to provide an efficient and convergent two-step protocol for the synthesis of substituted and enantiopure 1,4-benzoxazines and related benzofused heterocycles.^{3,4}

This chemistry capitalizes on the highly efficient cleavage of 1,2-cyclic sulfamidates with readily available 2-bromophenolate nucleophiles (4; X = O),⁵ allowing direct access to adducts **5** (after *N*-sulfate hydrolysis) which afford the target heterocycles **6** under Pd(0)-mediated Buchwald—Hartwig amination conditions (Scheme 2).⁶

Scheme 2. Tandem Ring-Opening/Pd(0)-Mediated Amination

$$\begin{array}{c} X \\ X \\ X \\ R_1 \end{array} \begin{array}{c} X \\ X \\ X \\ X \end{array} \begin{array}{c} X \\ X$$

The scope of this methodology is reported as is its application to a concise, high-yielding, and asymmetric entry to the potent antibiotic drug levofloxacin. In addition, the use of nucleophiles based on 2-bromoaniline ($\mathbf{4}$; X = NH) and 2-bromothiophenol ($\mathbf{4}$; X = S) provides direct access to substituted and enantiomerically pure quinoxaline and 1,4-benzothiazine variants, respectively.⁷

Using a structurally representative range of substituted 1,2and 1,3-cyclic sulfamidates **7a**–**e**, ^{2a,b,d} we have found that

(2) (a) Williams, A. J.; Chakthong, S.; Gray, D.; Lawrence, R. M.; Gallagher, T. *Org. Lett.* **2003**, *5*, 811–814. (b) Bower, J. F.; Švenda, J.; Williams, A. J.; Charmant, J. P. H.; Lawrence, R. M.; Szeto, P.; Gallagher, T. *Org. Lett.* **2004**, *6*, 4727–4730. (c) Bower, J. F.; Szeto, P.; Gallagher, T. *Chem. Commun.* **2005**, 5793–5795. (d) Bower, J. F.; Chakthong, S.; Švenda, J.; Williams, A. J.; Lawrence, R. M.; Szeto, P.; Gallagher, T. *Org. Biomol. Chem.* **2006**, *4*, 1868–1877. (e) Bower, J. F.; Szeto, P.; Gallagher, T. *Org. Biomol. Chem.* **2007**, *5*, 143–150. (f) Bower, J. F.; Riis-Johannessen, T.; Szeto, P.; Whitehead, A. J.; Gallagher, T. *Chem. Commun.* **2007**, 728–730

(3) For a recent review covering the synthesis and biological importance of 1,4-benzoxazines, see: Ilaš, J.; Anderluh, P. Š.; Dolenc, M. S.; Kikelj, D. *Tetrahedron* **2005**, *61*, 7325–7348.

(4) For recent approaches to 1,4-benzoxazines and related heterocyclic scaffolds, see: (a) Wolfer, J.; Bekele, T.; Abraham, C. J.; Dogo-Isonagie, C.; Lectka, T. *Angew. Chem., Int. Ed.* **2006**, *45*, 7398–7400. (b) Xu, D.; Chiaroni, A.; Fleury, M.-B.; Largeron, M. *J. Org. Chem.* **2006**, *71*, 6374–6381. (c) Feng, G.; Wu, J.; Dai, W.-M. *Tetrahedron* **2006**, *62*, 4635–4642. (d) Shinkevich, E. Y.; Novikov, M. S.; Khlebnikov, A. F. *Synthesis* **2007**, 225–230.

(5) Openings of 1,2-cyclic sulfamidates with 2-methoxyphenolate have previously been reported in 47–82% isolated yield: Okuda, M.; Tomioka, K. *Tetrahedron Lett.* **1994**, *35*, 4585–4586.

(6) For a review on Pd-catalyzed amination, see: (a) Yang, B. H.; Buchwald, S. L. *J. Organomet. Chem.* **1999**, *576*, 125–146. For a previous approach to benzoxazines using Ni(0)-mediated intramolecular amination of aryl chlorides, see: (b) Omar-Amrani, R.; Thomas, A.; Brenner, E.; Schneider, R.; Fort, Y. *Org. Lett.* **2003**, *5*, 2311–2314. For an example using Pd(0)-mediated intramolecular amination of an aryl chloride, see: (c) Omar-Amrani, R.; Schneider, R.; Fort, Y. *Synthesis* **2004**, 2527–2534.

(7) For a previous synthesis of a quinoxalinone via intramolecular Pd-(0)-mediated amination of an aryl iodide, see: Kitagawa, O.; Takahashi, M.; Yoshikawa, M.; Taguchi, T. *J. Am. Chem. Soc.* **2005**, *127*, 3676–3677.

nucleophilic cleavage with the sodium anion of 2-bromophenol (2 equiv) generally occurs between room temperature and 60 °C (in DMF) to deliver the corresponding adducts (8a-e) in high yield (88-99%) (Scheme 3 and Table 1).

Scheme 3. Synthesis of (3S)-3-Benzyl-1,4-benzoxazine $9a^a$

^a For other examples based on these procedures, see Table 1.

The only exception was cyclic sulfamidate **7d**, a substrate which is sensitive to β -elimination, ^{2d} which afforded 22% of *N*-benzyl cinnamylamine in addition to the desired adduct **8d** (in 57% yield). The efficient S_N2 nature of the initial nucleophilic displacement step is clearly demonstrated by comparing entries 2 and 3 (leading to **8b** and **8c**) in which none of the alternative diastereomer was detectable.

Pd(0)-catalyzed cyclization of phenylalanine-derived adduct **8a** was investigated using a range of ligands under

Table 1. Synthesis of 2- and 3-Substituted and 2,3-Disubstituted 1,4-Benzoxazines

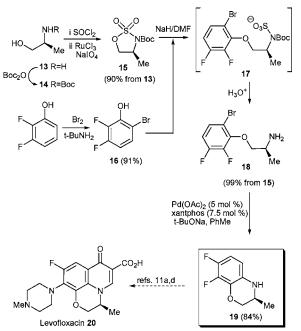
	sulfamidate	addition product (yield) ^a	heterocycle (yield) ^a
1	BnN Ph	BnHN O Br Ph—11. 8a (98%)	Ph N N N N N N N N N N N N N N N N N N N
2	MeN Ph	MeHN Ph 8b (97%)	Me,,,, Me 9b (65%)
3	MeN Ph	MeHN Ph 8c (88%)	Me Ne
4	BnN Ph	BnHN Ph 8d (57%) ^b	Ph 9d (76%)
5	BnN S O	(22%) Br BnHN Me 8e (99%)	Me Bn N N N N N N N N N N N N N N N N N N

^a Isolated yield. ^bC-Br reduction and polymerization occurred.

3284 Org. Lett., Vol. 9, No. 17, 2007

Table 2. Synthetic Scope: O-, N-, and S-Based Nucleophiles

	nucleophile	addition product (yield) ^a	heterocycle (yield) ^a	
1	Br OH F 10a	BnHN O F	Ph N F 12a (86%)	
2	HO Br	11a (98%) Br N Br N Ph—** 11b (98%)	12b (79%)	
3	OH Br Me	BnHN O Me	Ph Me 12c (72%)	
4	10c OH Br	11c (99%) Br Ph 11d (83%)	12d (50%) (+ 9% of 11d)	
5	SH Br 10e	BnHN S Ph— 11e (100%)	Ph N N N N N N N N N N N N N N N N N N N	
6	Br NH ₂	BnHN HN Ph— 11f (56%)	Ph N N N N N N N N N N N N N N N N N N N	
^a Isolated yield.				


standard conditions (*t*-BuONa, PhMe, 5 mol % of Pd(OAc)₂, 100 °C), and of those screened, xantphos (7.5 mol %) was most efficient affording benzoxazine **9a** in 88% yield.⁸ These conditions have successfully been applied to adducts **8b-d** to deliver the target heterocycles **9b-d** in good to excellent yield. A representative example based on the conversion of **7a** to **9a** is shown in Scheme 3, and other substrates are summarized in Table 1 (full details are given in the Supporting Information). Unfortunately, the annulation adduct **8e** derived from 1,3-cyclic sulfamidate **7e** did not cyclize (to form **9e**), and only reduction and polymerization were observed.⁹

Using the phenylalanine-derived cyclic sulfamidate **7a**, a more comprehensive assessment of the scope of the nucleophilic component and the subsequent Pd-catalyzed cyclization involved in this process has been conducted (Table 2). Phenolates are generally well tolerated, and a range of both

electron-poor (including 10a and 3-hydroxypyridine 10b) and electron-rich (10c and $10d^{10}$) nucleophiles are highly efficient in this process. The subsequent Pd-catalyzed arylation step occurs in moderate to excellent yield leading to 12a-d; the most difficult substrates were those which possess electron-donating substituents on the aromatic (e.g., $11d \rightarrow 12d$), and in such cases, cyclization was both slower and less efficient.

Extension of this two-step protocol also allows access to thio and aza variants 12e and 12f. Cyclic sulfamidate 7a reacted efficiently with 2-bromothiophenol 10e to deliver 11e in quantitative yield. Cyclization of this species was facile and afforded benzothiazine 12e in 89% yield. Opening of 7a with the anion of aniline 10f was less efficient, possibly due to competing elimination, and adduct 11f was isolated in 56% yield. Cyclization of 11f was also slow, and quinoxaline 12f was isolated in only 22% yield (30% based on recovered 11f). Obviously this process requires further optimization, but the results shown in Table 2 clearly demonstrate the breadth and potential applicability of this chemistry.

Scheme 4. Synthesis of Benzoxazine **19** and Formal Synthesis of Levofloxacin

The blockbuster antibiotic levofloxacin **20** (2006 sales of US \$1.41 billion) provides an appropriate focus for this methodology. The major challenge associated with developing an asymmetric entry to **20** resides in identifying efficient routes to the key chiral benzoxazine core **19**, and in this regard, several approaches have been reported. We have achieved this goal through the union of alanine-derived cyclic sulfamidate **15** and 6-bromo-2,3-difluorophenol **16** (Scheme 4).

Org. Lett., Vol. 9, No. 17, 2007

⁽⁸⁾ Other ligands screened included BINAP which gave **9a** in 76% yield and Verkade's TTPU ligand (Urgaonkar, S.; Xu, J. H.; Verkade, J. G. *J. Org. Chem.* **2003**, *68*, 8416–8423) which gave **9a** in 86% yield.

⁽⁹⁾ An example of a successful Pd-catalyzed cyclization to form a related seven-ring system has been reported. 6c

⁽¹⁰⁾ For the preparation of **10d**, see: Novak, Z.; Timar, G.; Kotschy, A. *Tetrahedron* **2003**, *59*, 7509–7513.

Commercially available alaninol **13** was *N*-Boc protected under standard conditions to give **14**, which was then converted to cyclic sulfamidate **15** in 90% yield over three steps. Pacation of **15** (in DMF) with the sodium anion of phenol **16** (1.2 equiv) (prepared by bromination of commercially available 2,3-difluorophenol in 91% yield led to smooth nucleophilic cleavage to afford the intermediate *N*-sulfate **17**. In this case, direct and concomitant removal of *both* the *N*-sulfate and *N*-Boc moieties was achieved by employing 10% H₂SO₄ in *p*-dioxane for the hydrolysis step which afforded cyclization precursor **18** in 99% overall yield from **15**. Cyclization of **15** (5 mol % of Pd(OAc)₂, 7.5 mol % of xantphos, *t*-BuONa, PhMe, 100 °C) then cleanly

afforded the key benzoxazine intermediate **19** in 84% yield $\{[\alpha]_D^{20} -9.1 \ (c\ 1.3,\ CHCl_3);\ lit.\ [\alpha]_D^{23} -7.8 \ (c\ 0.7,\ CHCl_3)^{11b}\}$. This sequence is highly efficient affording benzoxazine **19** in 74% overall yield over six steps. Conversion of this intermediate in three steps to levofloxacin **20** has previously been reported. ^{11a,d}

In summary, we have demonstrated an efficient and modular two-step protocol for the coupling of 1,2-cyclic sulfamidates with readily available 2-bromophenols as a means of accessing substituted and enantioenriched 1,4-benzoxazines and have shown that analogous chemistry is equally applicable to the synthesis of quinoxaline and 1,4-benzothiazine scaffolds. This methodology provides a direct and high-yielding entry to the drug levofloxacin, and its fundamental simplicity—the use of readily available nucleophilic and electrophilic components—makes it well suited to further applications within both academic and industrial settings.

Acknowledgment. We thank the EPSRC and GSK for financial support.

Supporting Information Available: Full experimental details, compound characterization data, and copies of ¹H and ¹³C NMR are available. This material is available free of charge via the Internet at http://pubs.acs.org.

OL0712475

3286 Org. Lett., Vol. 9, No. 17, 2007

⁽¹¹⁾ For selected previous synthetic studies on 20, see: (a) Hayakawa, I.; Atarashi, S.; Imamura, M.; Yokohama, S.; Higashihashi, N.; Sakano K.; Ohshima, M. US patent, 1986, 5,053,407. (b) Atarashi, S.; Yokohama, S.; Yamazaki, K.; Sakano, K.; Imamura, M.; Hayakawa, I. *Chem. Pharm. Bull.* 1987, 35, 1896—1902. (c) Sakano, K.; Yokohoma, S.; Hayakawa, I.; Atarashi, S.; Kadoya, S. *Agric. Biol. Chem.* 1987, 51, 1265—1270. (d) Mitscher, L. A.; Sharma, P. N.; Chu, D. T. W.; Shen, L. L.; Pernet, A. G. *J. Med. Chem.* 1987, 30, 2283—2286. (e) Atarashi, S.; Tsurumi, H.; Fujiwara, T.; Hayakawa, I. *J. Heterocycl. Chem.* 1991, 28, 329—331. (f) Kang, S. B.; Ahn, E. J.; Kim, Y.; Kim, Y. H. *Tetrahedron Lett.* 1996, 37, 9317—9320. (g) Satoh, K.; Inenaga, M.; Kanai, K. *Tetrahedron: Asymmetry.* 1998, 9, 2657—2662. (h) Adrio, J.; Carretero, J. C.; Ruano, J. L. G.; Pallarés, A.; Vicioso, M. *Heterocycles.* 1999, 51, 1563—1572.

⁽¹²⁾ Tewson has previously reported the synthesis of cyclic sulfamidate **15** in 78% yield from **14**: Posakony, J. J.; Grierson, J. R.; Tewson, T. J. J. Org. Chem. **2002**, 67, 5164–5169.

⁽¹³⁾ Pearson, D. E.; Wysong, R. D.; Breder, C. V. J. Org. Chem. 1967, 32, 2358–2360.